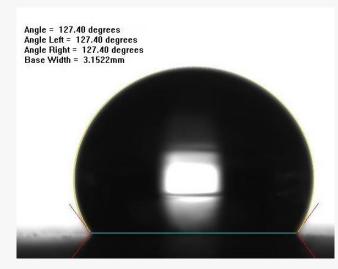


Selection and characterization of innovative solutions for biphilic surfaces


José Pereira

Laboratory of Thermofluids, Combustion and Energy Systems Center for Innovation, Technology and Policy Research IN+

IN+ GET TOGETHER

Supervisor(s): Prof. Ana Sofia Moita

20th September, 2019

Motivation and Context

• Selection, characterization and evaluation of materials for the superamphiphobic spots on biphilic surfaces

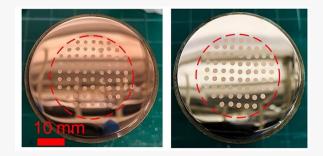


Figure 1 – Superamphiphobic spots on a biphilic surface. Source: Shen et Al ATE 2019

Objectives

- Selection of superamphiphobic materials
- Selection of the composition and design of the coatings
- Assessment of the characteristics of interest of the coatings
- Development of laboratory improving methods and industrial innovative procedures

- Superamphiphobic materials:
- Silane (SiH4) containing compounds Fluorosilane, Chlorosilane, PDMS, TMS, PFDS

Figure 2 – Chemical structure of a containing fluorosilane compound.

Source: researchgate.net

- Polysilicon
- Fluoropolymer

PCTFE	Poly chloro tri fluoro ethylene	-(CF2-CFCI)-
PFA	Tetra fluoro ethylene perfluoro alkyl vinyl ether copolymer	$-(CF_2-CF_2)_m-(CF_2-CF)_n-I_ORf$
FEP	Fluorinated ethylene propylene copolymer	$-(CF_2 - CF_2)_m - (CF_2 - CF)_n - I_{CF_3}$
ETFE	Ethylene-tetrafluoroethylene copolymer	$-(CF_2-CF_2)_{=}-(CH_2-CH_2)_{=}-$
PVDF	Polyvinylidene difluoride	-(CF ₂ -CH ₂),-
PTFE	Polytetrafluoro Ethylene	$-(CF_2-CF_2)_2-$

Table 1 – Types of fluoropolymers. Source: toho-sekei.com

- Composition of the coatings:
- Diatomaceous earth or diatomite (DE) (SiO₂ + Al₂O₃ + Fe₂O₃)

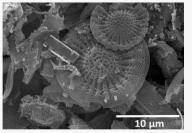


Figure 3 – Diatomite (DE) microstructure. Source: Brishma et Al ASS 2016

• Halloysite nanoclay (Al₂Si₂O₅(OH)₄)

PDMS, TMS, PFDS

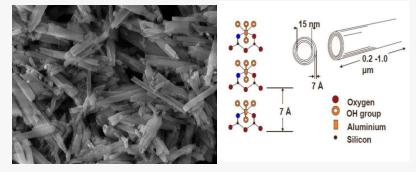
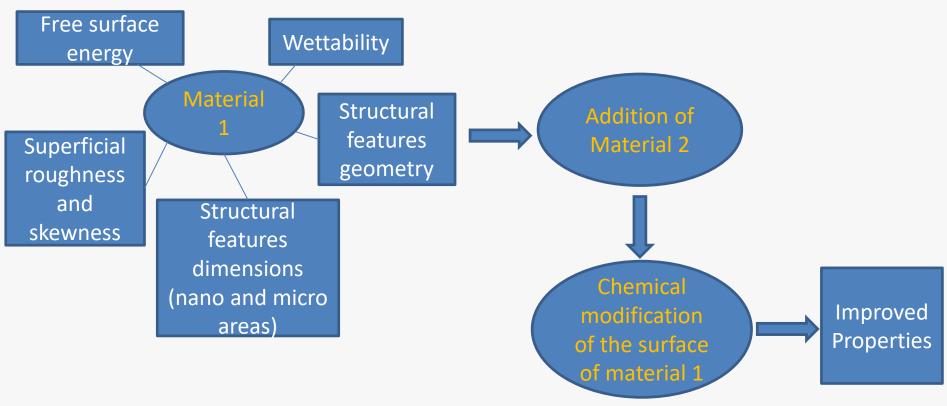
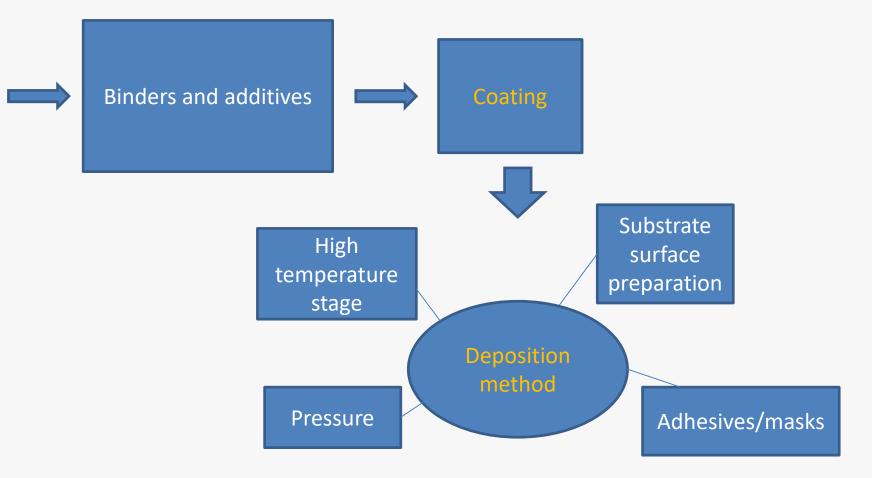




Figure 4 – Halloysite microstructure and dimensional characteristics. source: naturalnano.com

• Design of the coatings

- Assessment of the characteristics of interest of the coatings
- Superamphiphobocity (contact angle > 150°)

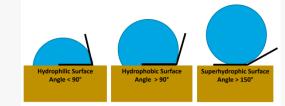


Figure 4 – Contact angles for different types of surfaces. Source: sciencedirect.com

• Heat resistance (pool-boiling regimes)

Figure 5 – Typical set-up for pool boiling studies. Source: Shen et Al ATE 2019

- Corrosion resistance
- Abrasion resistance
- Scratch resistance

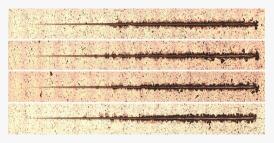


Figure 6 – Coating scratch resistance testing. Source: nanovea.com

• Self-cleaning

Figure 7 – Coating self-cleanig testing. Source: independent.co.uk

• Development of laboratory improving methods and industrial innovative procedures

- Brush
- Spray
- Immersion
- Adhesives

Thank you for your attention!